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Abstract

It has been demonstrated that a complex division of labor provides for the diversity of knowledge

that is critical for organizational innovation and productivity [Hage, J., 1999. Organizational

innovation and organizational change. Annual Review of Sociology 25, 597–622]. This article

examines the impact of complexity in an R&D setting and adopts the approach that collaborative

research involves a range of specialties and skills, which can be viewed separately from the

individuals involved in the collaboration process. To explore this hypothesis, the use of 2-mode

network analysis allows for an examination of the interrelationships of these competencies within a

cluster of R&D projects in a large multi-disciplinary national laboratory. These networks of

competencies are shown to have structural characteristics, which impact on the productivity of

research projects. It is argued that the interrelationship of network structure and complexity should be

given consideration in the management of R&D projects.

# 2004 Elsevier B.V. All rights reserved.

JEL classification: O32

Keywords: Social networks; R&D management; Innovation; Complexity

1. Introduction

In recent decades, research and development (R&D) has become an increasingly

specialized and complex endeavor (Boesman, 1997; Kodama, 1992; Miller and Morris,

1999). One component of this growing complexity has been the growing use of projects and
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teams to pursue R&D (Shenhar, 2001; Thamhain, 2003), including the use of virtual teams

(Gassmann and von Zedtwitz, 2003) and the adoption of a matrix structure (Katz and Allen,

1985). While the management of R&D, in general, presents numerous management

challenges (McDermott and Colarelli O’Connor, 2002; Sherma, 1999; Van De Ven, 1986),

very little attention has been given to managing the diversity and complexity of R&D

projects and teams (Jordan et al., 2004; Shenhar, 2001; Thamhain, 2003; Balachandra and

Friar, 1997). Although it is has been demonstrated that a more complex division of labor

has a positive impact on organizational outcomes, such as organizational innovation (Hage,

1999), the impact of such diversity on research productivity is still a matter of debate

(Reagans and Zuckerman, 2001).1

Despite the gap in the literature about managing the diversity of R&D projects, there is a

large and rich related literature on intra-organizational dynamics in R&D, including

important contributions from the literature on social networks. In particular, the latter

studies have examined a number of roles that networks play in R&D, including

communication networks (Allen, 1970), knowledge flows (Almeida and Kogut, 1999),

diversity (Reagans and Zuckerman, 2001), idea innovation chains (Hage and Hollings-

worth, 2000, and interorganizational networks (Powell et al., 1996). Yet, there is very little

in the literature that examines how projects, as distinct units of research, interact within an

organization, as in Grabher’s notion of a ‘‘project ecology’’ (Grabher, 2002) or Tuomi’s

‘‘ecological framework’’ (Tuomi, 2002). In contrast to the field of organizational

(population) ecology, which utilizes demographic concepts (Baum, 1996), a more

ecological approach might seek to ‘‘explore interdependencies between projects and the

firms as well as the personal relations, localities, and corporate networks on and around

which projects are built’’ (Grabher, 2002, p. 246). With this in mind, it is argued in this

paper that the interactions between projects and other organizational units represents

another level of social structure that needs to be taken into account in the management of

R&D.

To explore these interrelated issues—project diversity and project ecology—this paper

examines the interactions between two organizational categories in an R&D organization,

research projects and research departments. Specifically, this paper utilizes data from a

sample of 20 project teams drawn from a large, multi-disciplinary national laboratory. The

laboratory’s research departments encompass a diverse range of scientific and applied

disciplines, including biology, physics, engineering, and computational sciences. Because

the members of the research projects are drawn from the laboratory’s various research

departments, it is possible to explore the impact of the complexity of labor by analyzing the

interrelations between project teams and research departments.

The method that is employed to explore the question of how R&D projects ‘‘interact’’ is

2-mode network analysis. Specifically, we will look at the network structure of the sample

by examining the co-membership of researchers in projects and research centers. While

typical network analysis examines the interrelations between the same set of persons or

entities (1-mode analysis), 2-mode analysis looks at the relations between two equally
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interesting sets of persons or entities (Borgatti and Everett, 1997). For instance, a 2-mode

analysis can look at affiliation networks, which consist of sets of relations between

individuals and events, such as women and social events (Borgatti and Everett, 1997), or

co-membership of individuals in organizations, such as the analysis of overlaps in the

corporate board memberships (Galaskiewicz, 1985). In the latter example, 2-mode analysis

offers the ability to look at the network of relations between different groups based on the

membership of individuals in two or more groups.

In short, the use of 2-mode network analysis allows for a novel examination of the

impact of complexity on productivity by mapping scientific competencies (departments) to

scientific applications (projects). More specifically, we will be looking at interrelationships

between R&D projects and research departments whose boundaries are demarcated, more

or less, by scientific disciplines. To a certain extent, this excludes the individual altogether

and focuses on research projects as nodes and further, as bundles of skills and attributes

related to different scientific areas of interest. While differences in competencies can

correspond directly to disciplines and subject matter (biology versus physics, for example),

these differences might also arise due to different areas of research or research

methodology (experimentation versus simulation, for example). In this manner, the use of

2-mode analysis offers a different perspective on network relationships between research

projects and research departments.

After a brief overview of the relevant literature to frame our question, we discuss in

greater detail the data and methods utilized and present our analysis and finding. In order to

gauge the efficacy of this type of analysis, we then analyze our findings with respect to the

productivity of research projects, focusing on two primary variables, project centrality and

research productivity. The study concludes with a discussion of the results and implications

for further research on scientific productivity and R&D management.

2. Organizational innovation and complexity

Despite the increasing amount of complexity in the R&D process, the impact of

complexity on R&D is still relatively understudied (Kim and Wilemon, 2003). Indeed, one

aspect of complexity that has recent scant attention is the role of the diversity (complexity)

of R&D project teams, either demographic or scientific (disciplinary) diversity. Of

particular concern in this paper is the role of scientific complexity, defined here as the

number of disciplines or departments involved in a project (Larson and Gobeli, 1989). This

notion of scientific complexity is important, because it relates to the division of labor in

R&D and scientific research. Before we turn to a discussion of complexity in R&D, we first

briefly review the role of complexity in the literature.

In general, it has been recognized as far back as Adam Smith (Smith, 1976 [1776])

that a more complex division of labor has a positive impact on productivity. Later, Weber

argued that a highly specialized and complex division of labor, coupled with the

bureaucratic form of organization, allowed for greater productivity and efficiency

(Weber, 1978). As Durkheim similarly observed, an ever increasing complex division of

labor was a natural outcome of the development of modern society, although he

recognized that ‘‘pathological’’ forms of the division of labor could have unintended,
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even negative, results (Durkheim, 1965). More recently, Chandler (1977) detailed how a

complex division of labor supports the application of technology and increasing

productivity.

In the organizational literature, the role of a complex division of labor has been

identified as a critical factor in facilitating organizational innovation. In a recent

comprehensive review of the organizational innovation literature, Hage (1999) identified

three primary determinants of organizational innovation that have arisen in previous

studies: a complex division of labor, an organic structure, and the adoption of a high-risk

strategy. Of these three determinants, Hage argues that a complex division of labor is most

important because it encompasses the organizational learning, problem-solving, and

creativity capacities of an organization. While most studies of organizational innovation

have tended to address the connection between organizational structure and management

practices particularly, as this connection relates to facilitating or inhibiting the adoption of

innovations, such as new technology or organizational practices (Zammuto and O’Connor,

1992; Damanpour, 1991), the study of organizational innovation also encompasses aspects

of scientific productivity, that is, the generation of new products and ideas (Stuart, 1999;

Larson and Gobeli, 1989).

Within the R&D literature, a number of recent studies have explored the connection

among complexity of labor, organizational innovation and productivity in R&D. Perhaps

most well known is Cohen and Levinthal’s (1990) concept of absorptive capacity, which

captures a firm’s ability to evaluate and utilize outside knowledge. Analyzing investments

by firms in R&D; Cohen and Levinthal demonstrated that overlapping diversity of

expertise among internal units could create cross-functional interfaces that enhance a

firm’s absorptive capacity. In their work on idea innovation chains, Hage and

Hollingsworth (2000) undertake a broad overview of the literature and identify how

the diversity of competencies or knowledge in the R&D process is a key indicator of

innovation. In addition, Zammuto and O’Connor (1992) in a review of the literature on the

adoption of advanced manufacturing technologies (AMT) highlighted that previous studies

demonstrated that at higher levels of automation, complexity had a multiplier effect on the

adoption of AMTs. Finally, Larson and Gobeli (1989), in a study of 546 development

projects, found that more complex projects as represented by the number of different

disciplines or department involved in a project, had a higher degree of success. These

studies do not represent an exhaustive discussion of the literature, but rather are indicative

of a general consensus surrounding the positive impact of complexity on productivity in

R&D settings.

But the connection between complexity and productivity, including scientific

productivity, is not a straightforward one. In Alter and Hage (1993), the relationship

between task complexity and productivity was examined in an inter-organizational study of

social service agencies. While the focus was on non-profit organizations, not on R&D

organizations, Alter and Hage demonstrated that task complexity was directly related to

increased productivity, but that the types of networks that emerge in inter-organizational

collaboration to help coordinate task complexities play a key role in determining success.

In a review of the literature on complexity in R&D, Kim and Wilemon (2003) constructed a

detailed typology of organizational complexities, including a complex division of labor

and highlight the tradeoffs associated with complexity. In particular, Kim and Wilemon
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discuss the complexity between functional groups, as in a complex R&D project, and the

challenges associated with the coordination and management of such intra-organizational

complexities.

As the studies by Alter and Hage, and Kim and Wilemon suggest, intra-organizational

networks can play an important role in facilitating or mitigating the impact of complexity.

In the next section, we discuss in greater detail the interrelationship between complexity

and networks in R&D and the impact on innovation and productivity.

3. Complexity, networks, and research productivity

While the role of social networks in scientific research and R&D is recognized, it has

often been overlooked in favor of the formal structure of the research organization (Senter,

1987). Nonetheless, a number of seminal efforts in 1960s and 1970s have served to

illuminate the role of social networks in science, such as Price’s (1965) study of citation

networks, Zuckerman’s (1967) examination of collaboration among Nobel laureates,

Crane’s (1969) exploration of the invisible college hypothesis, and Allen’s (1977)

examination of communication networks and knowledge flows. Since the early 1980s,

however, there has been a tremendous increase in work on social networks in research

(Rogers et al., 2001). These recent studies on social networks in science and R&D have

encompassed a range of analyses, including studies of knowledge and learning networks

(Liebeskind et al., 1996; Bozeman and Corley, 2004), inter-organizational networking of

research organizations (Powell et al., 1996), and intra-organizational networks (Smith-

Doerr et al., 2004; Ahuja et al., 2003).

Within this growing social network literature, a number of studies have looked at the

interplay of complexity, networks and research productivity. One of the earliest studies

was Allen’s (1970) study of the communication networks of individual researchers in

different organizations. Allen found that ‘‘high’’ performers not only had more intense

communication networks, but also maintained a more diverse range of contacts, including

those outside the researcher’s respective field. Further, in a larger study, Allen (1977)

confirmed that intensity and diversity of communication networks were directly related to

increased R&D performance. In general, the role of these ‘‘gatekeepers’’ is an important

one, as they are the individuals who frequently obtain information external to the group and

then share it within the project team (Allen, 1970, 1977; Katz and Tushman, 1981). These

results are consistent with those found in more recent studies. For instance, researchers

with more ‘‘cosmopolitan’’ collaboration networks have been demonstrated to be more

productive in terms of publications (Bozeman and Lee, 2003) and receiving research grants

(Bozeman and Corley, 2004).

Despite the growing number of studies that have examined the role of networks in R&D,

many of them continue to discuss networks in general terms and have not utilized the tools

of network analysis that have been refined and honed in recent decades.2 In this regard, two

recent studies point illustrate the utility of these tools in understanding the relationship
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between complexity, networks, and productivity. Ahuja, Galletta, and Carley’s (2003)

study on the Soar group, a virtual R&D project, found that a project members’ central

location in the project network was the dominant predictor of individual performance.

Although the study did not directly address the issue of complexity, the study did

differentiate individuals on the basis of functional roles (users and developers) and status

(faculty, senior researchers, and students). The study found that centrality was a stronger

predictor of performance than individual characteristics. Reagans and Zuckerman (2001)

explored the question of whether demographic diversity contributed to R&D productivity.

The study found that diversity itself was not linked to productivity, but rather that two

components of project teams, network density and network heterogeneity, were linked. As

they argue, these network processes worked to enhance a team’s coordination and learning

capabilities.

In summary, the social network literature suggests that networks play a key role in the

link between complexity and productivity. As one would expect intuitively, network

density and network location help to account for a team or individual’s productivity, as

found in Ahuja et al. (2003) and Reagans and Zuckerman (2001). However, it is not clear

how network mechanisms might affect productivity when the question about complexity of

labor is reframed in terms of the diversity of scientific competencies, an important issue

when R&D teams increase in complexity. It is this question we now turn to investigate.

4. Data

The primary data used in this study come from a sample of scientific researchers in 20

research projects at a large national laboratory. The laboratory currently employs over 8000

researchers in over two dozen disciplinary centers and has a multi-billion dollar budget. As

noted in the introduction, these large laboratories are interesting settings to explore

questions about R&D, but have been largely overlooked in the literature. Further, this

laboratory supports a great deal of basic research, and very few studies have taken a

network perspective on basic research activities.

The selection of the 20 projects was conducted as part of a larger study focused on

developing case studies on performance measurement and scientific progress. The 20

projects used in the case studies and this research were selected from a pool of 400 R&D

projects based on the following criteria:

1. at least US$ 300,000 in annual funding;

2. in the second year of funding (as of 2003);

3. representation of all investments areas at the laboratory.

All of these projects are 3 years in length (with very limited potential for renewal), and

annual funding ranges from US$ 30,000 to over US$ 1 million. The overwhelming

majority of projects received between US$ 250,000 and 350,000 in annual funding. Out of

the 400 possible projects, 54 met the first two criteria. Because not all of the laboratory’s

investment areas had projects that met the first two criteria, it was not possible to have

complete representation of all investment areas. Nonetheless, the 20 projects that were
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selected represent an adequate, although not complete, cross-section of the laboratory’s

research projects. While 16 of the selected projects averaged roughly US$ 300,000 in

annual funding, four of the selected projects represent much larger (over US$ 1 million

annual funding) and longer-term (4–5 years) efforts. These projects were included as they

represent a significant effort by the laboratory to pursue new areas of research. The

resulting sample consists of 216 researchers in 20 R&D projects, representing 20 different

internal research departments.

In this analysis, the research departments are assumed to represent different research

competencies, and the number of departments represented in a given project is determined

to be the complexity of labor in that particular project. While this assumption does have

precedent, such as Allen’s (1977) distinction between scientists and engineers and Larson

and Gobeli’s (1989) use of functional departments, it does require a caveat. The lab’s

departments are not strictly organized along functional divisions, such as college

departments, but rather by areas of focus (i.e., combustion, transportation, energy

components, etc.). Hence, it is possible that a range of functional specialties could be

represented within each department. Nonetheless, it is assumed that researchers from each

of the departments lend something different—a competency, a skill, a cognitive map,

etc.—than researchers from other departments. Indeed, this paper suggests that

conceptualizing research departments in this manner offers a good example of the kind

of tacit knowledge that Von Hippel (1994) argues is limited and far from routine. Table 1

illustrates the types of diversity that exists within a handful of projects.

In addition to representing only a small fraction of the laboratory’s overall research

portfolio, it is important to note that these projects also represent only a small portion of each

researcher’s project portfolio. Based on responses from a 2003 survey of the laboratory, the

average researcher’s project portfolio is about five projects. Along with the data on the center

affiliation of project personnel, this analysis also utilizes data on each project’s productivity.

Unlike most studies of R&D productivity that focus on individual performance, this study

follows other recent studies in looking at network effects on the project or team performance

(Smith-Doerr et al., 2004; Reagans and Zuckerman, 2003). In this analysis, productivity is
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Table 1

Disciplinary diversity within selected projects

Project 1 Project 10 Project 15 Project 18

Combustion and

Physical Sciences

Energy and

Transportation Security

Combustion and

Physical Sciences

Defense Programs

Exploratory Systems

and Development

Microsystems S&T and

Components

Energy Components

and Metrology

Energy Components and

Metrology

Information and

Computation Sciences

Materials and Process

Sciences

Information and

Computation Sciences

Executive Support

Materials and

Engineering Sciences

Nuclear Weapons S&T Physical and Chemical

Sciences

Infrastructure and

Information Systems

Materials and Process Sciences

Microsystems S&T

and Components

Physical and

Chemical Sciences



defined as patents, papers, and hypotheses proven, and the data are self-reported by each

project on an annual basis. In many ways, this way of measuring productivity is incomplete

(Jordan and Malone, 2002; Kerssens-van Drongelen and Bilderbeek, 1999), but this issue is

beyond the scope of this paper (see Mote et al., 2004 for a more complete discussion). Rather,

it is assumed that the performance data used in this analysis are only a rough approximation of

a project’s productivity, and by no means takes into account all aspects of productivity, such

as advancements in scientific knowledge or learning.

The description of the data sources immediately suggests some qualifications that must

accompany any conclusions drawn from this investigation. First, as discussed above, the

sample is not a random selection, but does offer an adequate cross-section of the

laboratory’s project portfolio. Because larger projects are expected to be more productive, it

is likely that some selection bias exists in this direction, and we attempt to at least partially

control for this using regression analysis. Second, because the projects were selected as part

of a group of case studies, this research has some of the limitations of a case study. It cannot

be claimed that these results on network structure will hold for the rest of the research

laboratory, nor even for other projects funded through this particular lab program. Finally,

the performance data utilized in this analysis are limited in scope because data represents

only a single year in the life of the project. Since these measures—patents and

publications—tend to be lagging indicators of a project’s success, and these projects are of

typically 3 years in length, it may not give an accurate representation of project’s lifetime

productivity. However, the techniques for investigating complexity using new methods are

demonstrated, and it is argued that the results could be validated with additional studies

utilizing more complete data of a laboratory’s structure and performance.

5. Analysis of the data

The primary theoretical issue in this analysis is the interrelationship between

complexity of labor and intra-organizational networks on research productivity. Following

our discussion of the literature, we are interested in determining to what extent intra-

organizational networks facilitate or mitigate the impact of the complexity of labor on

productivity.

5.1. Descriptive analysis

Network researchers typically assume that networks have effects, but it could just be the

case that simply having a more diverse group of project personnel, combining applied and

basic researchers for instance, could be the determining factor, absent any network affects.

Hence, we need a point of comparison for the network analysis. A preliminary approach

might be to use descriptive data, simply reducing the notion of complexity to the sheer

number of different laboratory units (centers) involved in a research project. As Table 2

illustrates, it is possible to look at the number of project personnel by center and arrive at a

standardized figure of complexity for each project. The latter is essentially the number of

centers divided by the total personnel for each project, with a figure of 1 representing the

most diverse pool of labor possible, i.e., each researcher comes from a different center.
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Looking at the descriptive data, it is clear that there is wide variation among the

projects in the number of personnel and departments. In general, the projects with more

personnel tend to have more departments represented in the project composition. The

standardized project complexity reduces this variation relating number of personnel to the

number of departments in a project. In Table 3, those projects, which have a standardized

project complexity greater than .50, are highlighted in yellow. As we see, the projects with

the highest standardized project complexity are 15, 18, 1, 6, 10, and 13. While the

descriptive data give us a rough sense of the most ‘‘complex’’ projects, it does not take

into account how projects might be ‘‘connected’’ to one another through shared depart-

ments, which could highlight which departments or ‘‘competencies’’ are most important

or if there are particular structural configurations of competencies which yield greater

productivity.

5.2. Social network analysis

5.2.1. Arranging the data

The primary network data of interest data is the project and department affiliations of the

researchers. These affiliations are then arranged as a 2-mode project-by-center matrix. The

matrix (X) is arranged where xij > 0 if project i has a researcher from center j and xij = 0
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Table 2

Number of personnel by project

Project Total personnel

in project

Number of

departments in project

Average personnel

by department

Standardized project

complexity

1 13 7 1.86 0.54

2 5 2 2.50 0.40

3 37 7 5.29 0.19

4 28 6 4.67 0.21

5 10 3 3.33 0.30

6 6 3 2.00 0.50

7 6 2 3.00 0.33

8 7 1 7.00 0.14

9 10 3 3.33 0.30

10 8 4 2.00 0.50

11 6 2 3.00 0.33

12 7 1 7.00 0.14

13 6 3 2.00 0.50

14 6 2 3.00 0.33

15 5 4 1.25 0.80

16 10 2 5.00 0.20

17 21 6 3.50 0.29

18 7 4 1.75 0.57

19 5 2 2.50 0.40

20 13 6 2.17 0.46

Total 216 20 10.80 0.09



otherwise. The resulting matrix is displayed in Table 3, with projects represented by

numbers and centers by letters.

The methods utilized to analyze the network data will be those developed by Borgatti

and Everett (1997). Because most network analysis is geared towards 1-mode matrices, the

study of 2-mode introduces a number of challenges, in particular, the graphical

representation of correspondence analysis between the two sets of persons or entities. As

Borgatti and Everett point out, ‘‘the distances in (2-mode) correspondence analysis are not

Euclidian, yet human users of the technique find it very difficult to comprehend the maps in

any other way’’ (1997, p. 247). Their primary solution is to treat the data as a bi-partite

graph and compute geodesic distances to be used in ordinary multidimensional scaling and

other network measures. All social network measures and figures were derived using the

software program Ucinet 6.0 (Borgatti et al., 1999).

5.2.2. Multi-dimensional scaling

Following Borgatti and Everett (1997), we first derive a graphical representation of the

data, treating the data matrix as a bi-partite graph, computing geodesic distances and

submitting this matrix to multi-dimensional scaling. However, it is important to point out

that this approach relies solely on the pattern of connections, rather than the spatial position

of the nodes or the length of lines. Using Ucinet, this procedure yields the following

diagram.

Fig. 1 represents a multi-dimensional scaling of the network of connections between

projects and departments. As such, the figure allows for visual identification of the

structure of social relations among the projects and departments, as well as the key players

within this intra-organizational network field. In the graph, projects are represented with
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Table 3

Research projects by center affiliation data

a b c d e f g h i j k l m n o p q r s t

1 4 0 1 1 0 0 0 0 0 0 0 0 0 4 1 1 1 0 0 0

2 0 0 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 22 0 7 2 0 0 0 0 0 0 1 0 0 0 0 1 3 0 1 0

4 3 0 2 0 0 0 0 0 0 0 0 0 0 10 4 2 7 0 0 0

5 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 4 0

6 1 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

7 0 0 5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7

9 0 0 0 0 0 0 0 0 0 7 0 0 1 0 0 0 2 0 0 0

10 0 1 5 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

11 0 0 0 5 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0

13 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 3 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 2 0 0 0

15 1 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 1 0 0 0

16 0 0 9 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 0 0 8 3 0 0 1 0 0 0 5 0 0 2 0 2 0 0 0 0

18 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 1 0 3

19 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 0 0 0 0 1 1 0 0 6 0 0 2 0 0 0 0 1 0 0 2



square nodes and centers with round nodes. It is possible to locate two distinct clusters of

projects and departments on the left and right side of the diagram. As one would expect, the

larger projects with personnel from a greater number of departments, such as projects 3, 4,

and 17, are more centrally located in the larger cluster on the left. In contrast, a handful of

projects, such as projects 9, 18, and 20, appear to act as intra-organizational intermediaries,

bridging the larger cluster of projects and departments with the smaller cluster.

5.2.3. Measures of centrality

Because we are most interested in exploring the connections of projects to departments

and identifying those projects most centrally located within the departmental structure, we

will focus on selected measures of centrality: degree centrality, betweenness, closeness,

and eigenvector centrality. In general, centrality measures are focused on the number and

distance of ties a network actor has with other members of the network (Scott, 1991). In a

sense, the use of centrality measures gives us some indication of the potential flow of

knowledge and communication between projects and departments.3 As Freeman (1979, p.

22) discusses, however, the first three measures of centrality—degree, betweenness, and

closeness—implies ‘‘three competing ‘theories’ of how centrality might affect group
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Fig. 1. The network of projects and centers.

3 Network centralization (or global centrality) is a related measure that assesses the degree to which an entire

network is focused around a few central nodes (Scott, 1991). As this analysis looks at only a partial representation

of the entire organizational network field, centralization has been omitted.



processes—centrality as control, centrality as independence or centrality as activity.’’ The

fourth measure of centrality—eigenvector centrality—can be considered an extension of

degree centrality, reflecting that centrality is not simply a matter of one’s own network ties,

but also the network ties of those to which you are connected (Bonacich, 1987). As we

discuss in greater detail below, the measures of centrality then offer four different ways of

identifying how network structure might affect complexity and productivity. While

measures of centrality are complicated in 2-mode analysis, as Borgatti and Everett (1997)

demonstrate, representing the 2-mode data as a bipartite graph allows for the utilization of

standard measures of centrality.

Most simply, degree centrality is the number of nodes to which an actor is adjacent, and

it offers an idea about the potential communication activity of an actor, that is, the higher

measure the greater potential for activity within the flow of communication (Freeman,

1979). As Borgatti and Everett (1997) point out, 2-mode analysis offers a straightforward

interpretation in the 2-mode case. In contrast, closeness indicates the potential

independence of an actor from the flow of communication. As Scott indicates, the

simplest notion of closeness is calculated from the sum of the geodesic distance to all other

points in the graph, and a node is ‘‘close’’ if it lies at short distance from many other points

(Scott, 1991). In this manner, an actor is centrally located but is not dependent on others as

‘‘intermediaries’’ or ‘relayers’ of information (Freeman (1979), p. 224). Betweenness is

defined as the extent to which a node is ‘‘between’’ two other modes (Scott, 1991), and it

captures the capacity for an actor to play the role of intermediary in the network,

connecting two actors that are not otherwise connected. The measure is complicated in the

2-mode case because the use of a bipartite graph means that paths can originate and

terminate at a node from either vertex set (Borgatti and Everett (1997), p. 256). In other

words, the betweenness of a project or department is a function of paths from project to

project, from projects to departments, and from departments to departments. Nonetheless,

betweenness can be considered a measure of the extent that an actor can control the flow of

information. Finally, eigenvector centrality is a variant of degree centrality and ‘‘is

proportional to the sum of centrality of the nodes, it is adjacent to (Borgatti and Everett

(1997), p. 257).’’ In general, eigenvector centrality captures not only how many actors you

‘‘know,’’ but how many actors they ‘‘know’’ as well. In this manner, an actor that is

connected to many actors (high degree centrality), who are themselves well connected

(also with high degree centrality) has a high level of eigenvector centrality. Conversely, an

actor who is connected only to actors who are less connected (isolates or near isolate) does

not have a high level of eigenvector centrality, even if they have a high measure of degree

centrality. In a sense, eigenvector centrality offers a measure of the diversity of a node’s

network.

In Table 4, the raw and normalized measures of centrality are listed for each project and

Table 5 tabulates the top five projects for each measure.4 In both tables, the measures of

centrality have been associated with their potential network impacts, activity,
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4 Although Borgatti and Everett (1997) suggest an additional normalization step for 2-mode data, we are

indebted to an anonymous reviewer who pointed out that normalization is needed for comparing across modes, but

not comparing within a single mode. As the analysis is primarily concerned with only comparing projects, we

have not undertaken the 2-mode normalization.



independence, control, and diversity. Looking at both tables, the five projects with the

highest degree centrality are also the largest projects with the greatest number of

departments represented in their project composition (3, 4, 17, 1, and 20). Of course, this

makes intuitive sense because degree centrality simply measures the total number of

connections. Because the rankings of the normalization of degree centrality remain the

same, we can conclude that the rankings of degree centrality are, indeed, a factor of the size

of the projects. The measures of betweenness roughly match those of degree centrality,

however, the rank order has changed significantly. Indeed, the high ranking of project 20

confirms the intermediary role between the two main clusters of projects and departments

suggested in Fig. 1. In contrast, the measures of closeness highlight a very different set and

ranking of projects (18, 11, 19, 10, and 17). With closeness, a lower score indicates a

project with a higher closeness ranking. Referring back to Fig. 1, all five of these projects

were located on the periphery of the network diagram, indicating that these projects did not
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Table 4

Centrality measures for projects

Projects/

centers

Number of

personnel

Number

of centers

Degree

(activity)

Ndeg Closeness

(independence)

Betweenness

(control)

NBet Eigenvector

(diversity)

NEig

1 13 7 13.00 33.33 42.39 76.947 10.384 .317 44.798

2 5 2 5.00 12.82 33.62 9.283 1.253 .083 11.743

3 37 7 37.00 94.87 42.39 94.299 12.726 .296 41.810

4 28 6 28.00 71.80 41.49 52.281 7.055 .278 39.288

5 10 3 10.00 25.64 38.24 23.610 3.186 .150 21.173

6 6 3 6.00 15.39 38.24 15.465 2.087 .176 24.864

7 6 2 6.00 15.39 33.62 9.283 1.253 .083 11.743

8 7 1 7.00 17.95 23.78 0 0 .003 .466

9 10 3 10.00 25.64 33.62 75.00 10.121 .068 9.553

10 8 4 8.00 20.51 30.47 43.901 5.925 .137 19.419

11 6 2 10.00 25.64 27.47 2.476 .334 .070 9.861

12 7 1 6.00 15.39 32.50 0 0 .063 8.903

13 6 3 7.00 17.95 38.24 16.275 2.196 .178 25.207

14 6 2 6.00 15.39 33.62 6.776 .914 .094 13.255

15 5 4 5.00 12.82 35.46 32.916 4.442 .147 20.835

16 10 2 10.00 25.64 33.62 9.283 1.253 .083 11.743

17 21 6 21.00 53.85 31.97 33.749 4.554 .216 30.578

18 7 4 7.00 17.95 24.68 76.00 10.256 .007 .984

19 5 2 5.00 12.82 29.55 2.240 .302 .111 15.638

20 13 6 13.00 33.33 40.63 275.217 37.141 .087 12.268

Table 5

Centrality rankings of projects

Ranking Degree

(activity)

Closeness

(independence)

Betweenness

(control)

Eigenvector

(diversity)

1 3 18 20 1

2 4 11 3 3

3 17 19 1 4

4 1 10 4 17

5 20 17 10 6



rely on a large number of connections but still remained in central positions for receiving

information. The three projects that were the most ‘‘close’’ to all other points on the graph

(as identified by lower closeness scores) were 18, 11, and 19. Looking at measures of

betweenness, we see that projects 20, 3, and 1 have the highest measures, while projects 1,

3, and 4 have the highest eigenvector centrality measures.

Across the measures of centrality, projects 1, 3, 4, and 17 stand out as the most central

projects. In our simple descriptive approach to the data, only project 1 ranked high. Further,

the highest ranked project in the descriptive data, project 15, is typically ranked in the

middle of the pack on the centrality measures. As expected, projects with the largest

number of personnel are the highest ranked, although the closeness measure seems to be

more appropriate for smaller projects (18, 11, 19, and 10).

6. Analysis of performance data

6.1. Performance data

Turning to projects’ performance data, we can begin to assess the efficacy of network

analysis in determining the impact of complexity on productivity. The productivity

reported by the projects in 2002 is listed in Table 6. Because we are only looking at 1 year

of productivity in the 3-year life of a project, this may explain why some projects have no

reported performance figures in the table. The projects may, in fact, have reported

performance figures in the previous and/or concluding year of the project. Of the 13
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Table 6

Project performance data

Project Refereed

publications

Other reports

and publications

Total

publications

Patent

disclosures

Patent

applications

Patents

granted

Total patent

actions

1 21 21 14 8 4 26

2 3 3 3 3

3 22 3 25 2 1 3

4 5 5 1 1

5 2 2

6

7

8 1 1

9 3 2 5

10 2 2 4

11 4 4 1 1

12

13 2 2

14

15 1

16

17 6 6 1 1

18 3 3 13

19

20



projects that reported performance data, the network analysis of complexity identified

seven. The projects identified as ‘‘complex’’ by the simple descriptive approach (1, 6, 10,

13, 15, and 19) only identified four with reported productivity, and further, those identified

by this approach were not the most productive projects.

6.2. Correlation matrix

To better determine the impact of complexity and the measures of centrality on

productivity, a bivariate correlation matrix was constructed. In Table 7, we see that the

number of centers and all of the measures of centrality, except betweenness, were

significantly correlated with productivity. As expected, the number of personnel and

centers were highly correlated with productivity, but the number of centers showed a

stronger relationship. Among measures of centrality, eigenvector centrality had the

strongest relationship with productivity, and indeed, the coefficient was even larger than

that for the number of centers. Interestingly, betweenness did not show a significant

relationship with productivity, suggesting that the intermediary role does not lend itself to

increased productivity.

6.3. Regression results

As the analysis has demonstrated so far, there is a relationship between the number of

centers, selected measures of centrality, and productivity. In order to better isolate the

impact of centers and centrality on productivity, at least on a superficial basis, a regression

analysis was conducted using productivity as the dependent variable. We estimated six

simple models using various complexity measures. In Model 1, we only included the
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Table 7

Correlation matrix for project variables

Mean S.D. Personnel Centers Standardized

complexity

Degree

centrality

Closeness

centrality

Betweenness

centrality

Eigenvector

centrality

People 10.80 8.48

Centers 3.50 1.93 0.745**

Standardized

complexity

0.37 0.17 �0.386 0.229

Degree

centrality

11.00 8.40 0.994** 0.739** �0.382

Closeness

centrality

34.28 5.47 0.524* 0.623** 0.087 0.504*

Betweenness

centrality

42.75 62.27 0.348 0.636** 0.197 0.337 0.417

Eigenvector

centrality

0.13 0.09 0.689** 0.768** 0.080 0.685** 0.778** 0.132

Research

productivity

5.80 11.50 0.491* 0.649** 0.052 0.494* 0.463* 0.203 0.690**

* <0.05.
** <0.001.



number of personnel and centers. In successive models, these variables were retained as

control variables and each measure of centrality, as well as standardized complexity, was

included separately. The results of the regression are displayed in Table 8.

The results of the regression analysis indicate that R&D productivity is significantly

affected by the number of centers, but the impact of measures of centrality is mixed. More

specifically, the regression coefficients for the number of centers are both positive and

significant across most of the models. In Model 6, however, the regression coefficient for

the number of centers is substantially reduced and no longer significant. Rather, the

regression coefficient for eigenvector centrality is both larger and significant, although only

at p < .1. Further, the R-square for the model is higher than that for Model 1. Also of

interest is the result on the regression on betweenness with a negative regression

coefficient. Similar to the correlation analysis, the regression suggests that the role of

intermediary does not lend itself to increased productivity.

7. Concluding discussion

Although marked by some shortcomings, the results of the study are suggestive that the

complexity of labor is indeed an important factor that contributes to research productivity.

Further, the analysis suggests that network analysis can be a useful tool in determining the

relationship between complexity and productivity. The most interesting findings were

those from the regression analysis on the impact of eigenvector centrality and betweenness

on productivity. Indeed, the results of these two measures indicate that a strategy of

connecting projects to departments that are, in turn, well-connected to other projects has a

clear advantage over a strategy of having projects acts as bridges between distinct clusters

of departments. When one takes into account the changes that have occurred in R&D

organizations in recent decades, these findings make intuitive sense. In the past, R&D,

particularly basic research, was largely pursued separately by functional departments. In

this manner, functional departments constituted separate and unconnected communities of
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Table 8

Linear regression of scientific productivity (papers and patents) on measures of complexity

Model

1 2 3 4 5 6

Personnel .015 �0.427 �0.606 �.090 0.002 �0.116

Centers .638** 1.049* .641** .952** .588* 0.353

Standardized complexity – �0.353 – – – –

Degree centrality – – 0.623 – – –

Betweenness – – – �.371 – –

Closeness – – – – 0.096 –

Eigenvector centrality – – – – – .498*

R2 0.422 0.453 0.427 0.499 0.427 0.516

N = 20.
* <.1.
** <.05.



interest. However, the organization of R&D along strictly along functional lines has

declined, and the move to more project-oriented R&D has achieved a significant amount of

cross-functional integration. As functional lines have eroded, more R&D workers interact

and share a common language (Dougherty, 1992).

Within this milieu of greater cross-functional integration, the role of intermediary (as

measured by betweenness) becomes less important as a strategy for increasing R&D

productivity. Interestingly, Ahuja (2000) similarly found that an increase in structural holes

has a negative impact on the innovation output of the intermediary firm in an inter-

organizational network. Rather, the capacity for innovation and productivity is increased

not just by connecting to more functional areas, but connecting to other functional areas

that are, in turn, also connected to a large number of functional areas (a project’s

eigenvector centrality). For example, this suggests that connecting to other central projects

might have a multiplier effect on absorptive capacity by increasing the capacity for

acquiring new knowledge and developing innovations. In short, a project’s productivity is a

function of the productivity of the other projects to which it is connected.

What has been left out of the study is a greater analysis and discussion of the role of

departments, that is, the research competencies. Clearly, a more comprehensive

understanding of the dynamics of the complexity of labor must take into account the

interrelationships of these competencies, particularly with regard to the functional roles

played by project members (as in Ahuja et al., 2003). In this manner, it is important to

determine not only what the project members know, but also what they do within the

context of the project. But such a discussion raises a number of questions that cannot be

answered with the data at hand.

In summary, it is clear that complexity defined simply as greater heterogeneity is too

simple. Rather, the analysis suggests that one needs to take into account the network

structure of the projects and departments, the constellation of people and competencies, as

a complement to other network and group processes in an R&D setting (as discussed in

Brown and Eisenhardt, 1995 and Reagans and Zuckerman, 2000). As Kim and Wilemon

(2003) argue, the increase in complexity in new product development, and by extension,

R&D in general, present challenges to management that cannot be overlooked. The results

of this study are promising and highlight not only another level of structure within the

framework of complexity, but also the utility of network analysis in understanding and

measuring this element of complexity.
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